“I have walked across the surface of the Sun. I have witnessed events so tiny and so fast they can hardly be said to have occurred at all. But you, Adrian, you’re just a man. The world’s smartest man poses no more threat to me than does its smartest termite.” – Doctor Manhattan

The above quote by Doctor Manhattan from the 2009 movie, Watchmen, made a very big impact on me. Not only did Doctor Manhattan have extraordinary physical capabilities, but also boundless intelligence and wit. Most scintillating however, was his ability to observe and control miniscule atomic particles and impossibly fast to imagine metaphysical events. Doctor Manhattan didn’t really strike me as a lush, but I’m sure that he would have been fascinated with the chemically complex and ever changing matrix that is maturing wine.

As a former minor winemaker at quite a few cellars, my favorite place has always been the barrel maturation cellar. Barrel ageing is ostensibly one of a wine’s more important stages of evolution before bottling. But how exactly does wine change during barrel ageing and what effect does it have on the countless chemical reactions taking place in wine every second? The main effect of oak barrel ageing is twofold. Wood character is introduced (the rate and intensity is mostly dependent on fill status of the barrel) and oxygen is very slowly introduced to the wine. Generally speaking, this results in softening of the harsh tannins and flavors present at the end of fermentation. Oak is a fascinating substance, which has a profound and remarkable effect on the flavor chemistry of wine. Key oak derived compounds are tannin, lignin, cellulose and hemicellulose.

Tannin plays a vital role in barrel ageing. Although most tannin in wine comes from the grapes, some of it is also liberated by the barrel during ageing. So what exactly is the deal with tannin? An experienced winemaker will instinctively know how to optimally merge and balance the tannins extracted during the youthful stages (fermentation, skin contact and pressing) and the mature stages (barrel ageing and blending). For instance, more tannic grape varieties such as Tannat, Cabernet Sauvignon, Nebbiolo and Shiraz cannot be approached the same as the less tannic Pinot noir. Once again, winemaker experience is paramount.

OK, now hold on to your chemistry hat, here comes the hard (but interesting) bit! Phenolic compounds (consisting of natural phenols and polyphenols) in wine are largely responsible for imparting taste, colour and mouthfeel to wine. They include phenolic acid, stilbenes, flavonols, dihydroflavonols, anthocyanins, flavanol monomers (catechins) and flavanol polymers (proanthocyanidins). Natural phenols can be separated into flavonoids and non-flavonoids. The latter group includes stilbenoids such as resveratrol and phenolic acids such as benzoiz, caffeic and cinnamic acids. The former group includes anthocyanins and wait for it… tannins!

What would a good red wine be without vanilla flavors, sweet and toasty aromas and notes of tea and tobacco? Specific compounds create these nuances in finished wine, for example: volatile phenols containing vanillin; carbohydrate degradation products containing furfural, a component yielding a sweet and toasty aroma; “oak” lactones imparting a woody aroma; terpenes providing “tea” and “tobacco” notes, and hydrolysable tannins, which are important to the relative astringency of the wine. Take note, every time you’re quaffing a wine (hopefully a worthy vintage), you’re consuming everything you’ve just read above. If this doesn’t sit quite right with you, then I guess nothing much will.

They say you should have respect for your elders. So, tread lightly the next time you pass through a barrel maturation cellar. You might even see Doctor Manhattan skulking around in the dark, silent corners…

Bernard Mocke is a technical consultant for Oenobrands.